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Characterizing the interactions 
between classical 
and community‑aware centrality 
measures in complex networks
Stephany Rajeh  *, Marinette Savonnet, Eric Leclercq & Hocine Cherifi 

Identifying vital nodes in networks exhibiting a community structure is a fundamental issue. Indeed, 
community structure is one of the main properties of real-world networks. Recent works have shown 
that community-aware centrality measures compare favorably with classical measures agnostic 
about this ubiquitous property. Nonetheless, there is no clear consensus about how they relate and 
in which situation it is better to use a classical or a community-aware centrality measure. To this end, 
in this paper, we perform an extensive investigation to get a better understanding of the relationship 
between classical and community-aware centrality measures reported in the literature. Experiments 
use artificial networks with controlled community structure properties and a large sample of real-
world networks originating from various domains. Results indicate that the stronger the community 
structure, the more appropriate the community-aware centrality measures. Furthermore, variations 
of the degree and community size distribution parameters do not affect the results. Finally, network 
transitivity and community structure strength are the most significant drivers controlling the 
interactions between classical and community-aware centrality measures.

Interactions between entities are pervasive in social, technological, infrastructural, information, and biological 
systems. Identifying influential nodes in those networks is a crucial problem. Indeed, multitude of applications 
exist compassing from combating epidemic outbreaks1, detecting essential proteins2, predicting contagions in 
animal groups3, to estimating robustness of infrastructure networks4, planning landscapes5, improving routing 
efficiency on the internet6, understanding information diffusion7 and many other more8,9. Centrality measures are 
one of the main approaches to deal with this issue. Classically, they quantify the importance of a node based on 
a typical network topological property8,9. They can be classified into local and global measures depending on the 
topological information they process. Local measures rely on a node’s ability to influence its neighborhood, while 
global measures are concerned with the ability of a node to influence the whole network. Generally, local meas-
ures require a low computation cost, while global ones are computationally intensive. More recent works tend 
to consider centrality as a multidimensional issue where both local and global information can be combined10,11.

While there is a great deal of work on designing centrality measures, the mainstream does not exploit the 
network’s community structure. However, it is a ubiquitous property observed in the vast majority of real-world 
networks12–14. A community is generally apprehended as a group of nodes densely connected between each 
other and sparsely connected with the other nodes of the network15. As communities play a significant role in 
understanding how nodes behave in networks16–18, a research area concerned with the relation between com-
munity structure and the importance of nodes has recently emerged in network science. These works have shown 
that incorporating community structure information allows designing more effective centrality measures19–26. 
We refer to them as “community-aware” centrality measures. One can divide them into three groups (local, 
global, and mixed measures) according to the type of link they consider. Indeed, in modular networks, one 
can distinguish intra-community links from inter-community links. Intra-community links (strong ties/short-
range interactions) connect nodes belonging to the same community, while inter-community links (weak ties/
long-range interactions) connect nodes belonging to different communities27. Local measures exploit intra-
community links. In other words, local measures view the neighborhood as the dimension to identify influential 
nodes. Global measures target inter-community links. In this case, influential nodes are the bridges connecting 
different communities. Finally, mixed measures target influential nodes based on a combination of their local 
and global characteristics.
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This study investigates ten classical (community-agnostic) centrality measures and twenty-eight community-
aware centrality measures. This representative set covers the spectrum of the various categories, and it contains 
the most influential ones. The local classical centrality measures are Degree, Leverage, Laplacian, Diffusion 
Degree, and Maximum Neighborhood Component. The global classical centrality measures are Betweenness, 
Closeness, Katz, PageRank, and Subgraph centrality. Among the twenty-eight community measures, twenty 
are based on the “modular centrality” proposed by Ghalmane et al.20. In this work, the authors claim that a 
node centrality has a local and a global component in modular networks. The local dimension is computed on 
the network extracted from the original modular network by removing the inter-community links. The global 
dimension is computed on the network obtained by keeping the inter-community links and the nodes attached 
to these links in the original network. Consequently, one can extend any classical centrality measure to its so-
called modular version. For example, the local degree centrality of a node is the number of its intra-community 
links. Its global component is the number of its inter-community links. The ten local community-aware centrality 
measures under investigation are the local component of the modular centrality derived from the ten classical 
centrality measures20. The twelve global community-aware centrality measures are the Number of Neighboring 
Communities centrality19, the Bridging centrality21 and the global component of the modular centrality of the 
ten classical centrality measures20. Finally, the set of six mixed community-aware centrality is made of Comm 
centrality23, Community-based Mediator centrality22, Community Hub-Bridge centrality19, Community-based 
centrality24, Participation Coefficient25, and K-shell with Community centrality26.

Previous works investigated the relations between community structure and macroscopic network topological 
properties. In28, Orman et al. show that the community structure strength significantly affects the average dis-
tance, transitivity, and assortativity of the network. Wharrie et al.29 conclude that high clustering naturally yields 
to a greater number of communities. Orman et al.30 show that community structure strength and transitivity are 
positively correlated. Furthermore, a modular structure can still exist even with a low value of transitivity. The 
work by Lancichinetti et al.31 show that a set of mesoscopic characteristics such as community size distribution 
and average path length of networks originating from the same domain are relatively similar. A paper by Wang 
et al.32 reveals that as the community structure strength increases, the communicability in a network decreases. 
According to the work of Nematzadeh et al.33, the emergence of a global diffusion occurs after reaching a mini-
mum threshold of community structure strength. All these works allow a better understanding of the relations 
between the community structure and the network’s macroscopic topological properties. However, they do not 
give a clue on their effect on centrality measures.

Another set of works is concerned with the effect of network topology on classical centrality measures. Li 
et al.34 show that classical centrality measures are generally positively correlated and that correlation is independ-
ent of the network size. Ronqui and Travieso35 demonstrate that correlation values of classical centrality meas-
ures are higher on scale-free models as compared to in real-world networks. Schoch et al.36 show that classical 
centrality measures are well correlated on threshold graphs. In37, Rajeh et al. report that density and transitivity 
significantly affect the correlation between centrality and hierarchy measures. Finally, Oldham et al.38 show 
that modularity is the main parameter driving the correlation between classical centrality measures. Although 
these works light up the relationship between network topology and classical centrality measures, they bring no 
information about community-aware centrality measures. To our knowledge, up to now, the relationship between 
classical and community-aware centrality measures and their relation with the network’s topological property 
is still unexplored. An extensive study is performed on the interplay between classical and community-aware 
centrality measures to fill this gap. The influence of macroscopic and mesoscopic topological properties of the 
network are examined. This work allows answering questions such as in which practical situation community-
aware centrality measures present an added-value as compared to classical centrality measures.

The main findings reported in this paper are the following: 

(1)	 As the communities become more and more well separated, the correlation values observed between 
global community-aware centrality measures and classical centrality measures decrease. Conversely, the 
correlation values between local community-aware centrality measures and classical ones increase. Mixed 
community-aware centrality measures are split into two categories. Some behave similarly to local commu-
nity-aware centrality measures while the others behave like global community-aware centrality measures 
depending on which part they favor.

(2)	 Results are generally insensitive to the variations of the parameters of the degree and community size 
distribution.

(3)	 Transitivity and the mixing parameter play a crucial role in driving the correlation variation between clas-
sical and community-aware centrality measures.

Comparative evaluation using a synthetic network benchmark
The correlation between classical and community-aware centrality measures is investigated using synthetic net-
works generated with the LFR model39. It allows controlling the strength of the community structure through the 
mixing parameter ( µ ). This parameter is the ratio of the inter-community links to the total number of links in 
a network. The power-law exponents of the degree distribution ( γ ) and the community size distribution ( θ ) are 
also tunable. A set of networks has been generated to evaluate these three parameters’ influence on the Kendall’s 
Tau correlation between all possible combinations of classical and community-aware centrality measures. The 
synthetic network parameters and their respective values are reported in Table 1.

Influence of the community structure strength.  The mixing parameter ( 0 ≤ µ ≤ 1 ) controls the 
community structure strength. A low value of µ characterizes networks with a strong or well-defined commu-
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nity structure (very few inter-community links). By contrast, a high mixing parameter value results in a network 
with a weak community structure (a higher proportion of inter-community links than intra-community links). 
Nine networks spanning from very strong ( µ = 0.05) to very weak ( µ = 0.70) community structure are used in 
the experiments. Other parameters are fixed to typical values ( γ = 2.7, θ = 2.7).

The heatmaps in Fig. 1 represent the Kendall’s Tau correlation between classical and community-aware 
centrality measures. The heatmap at the top is for a network with a strong community structure ( µ = 0.05 ). The 
middle concerns a network with a medium community structure strength ( µ = 0.25 ). Finally, the bottom is for 
a network with a weak community structure ( µ = 0.70 ). Figure S1, in the Supplementary Material, contains 
the figures with other values of the community structure strengths ( µ = 0.1, 0.15, 0.20, 0.30, 0.35, 0.40 ). The 

Table 1.   Synthetic network parameters generated by the LFR model.

Network parameter Value

Number of nodes 2500

Average degree 8

Maximum degree 27

Exponent for degree distribution ( γ) [2, 2.7, 3]

Exponent for community size distribution ( θ) [2, 2.7, 3]

Minimum community size 4

Maximum community size 250

Mixing parameter ( µ) [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.70]

Figure 1.   Heatmaps of Kendall’s Tau correlation of the various combinations between classical ( αi ) and 
community-aware ( βj ) centrality measures in synthetic networks. γ is the exponent of the degree distribution. θ 
is the exponent of the community size distribution. Three values of the mixing parameter µ are reported [0.05, 
0.25, 0.70]. The classical centrality measures are: αd = Degree, αb = Betweenness, αc = Closeness, αk = Katz, αp = 
PageRank, αs = Subgraph, αm = Maximum Neighborhood Component, αlev = Leverage, αdif  = Diffusion, αlap = 
Laplacian. The local community-aware centrality measures are: ( βL
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local component of the classical centrality measures based on modular centrality. The global community-aware 
centrality measures are: ( βG
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centrality measures based on modular centrality, βNNC = Number of Neighboring Communities centrality, βBC 
= Bridging centrality. The mixed community-aware centrality measures are: βComm = Comm centrality, βCHB = 
Community Hub-Bridge centrality, βCBC = Community-based centrality, βPC = Participation Coefficient, βks = 
K-shell with Community centrality, βCBM = Community-based Mediator centrality.
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heatmaps are arranged into three blocks. They correspond to local community-aware centrality measures, global 
community-aware centrality, and mixed community-aware centrality measures from left to right.

For a strong community structure ( µ = 0.05), the left block of the heatmaps representing the correlation 
between local community-aware centrality measures and the classical centrality measures is very patchy. It is a 
sign of wide variations. For example, the correlation value of the local component of PageRank modular centrality 
( βL

p  ) with Closeness centrality ( αc ) is 0.041, while its correlation with Leverage centrality ( αlev ) reaches 0.84. The 
middle block of the heatmaps concerning the correlation between global community-aware centrality measures 
and classical centrality measures is more uniform. The vast majority of the observed correlation values are low. 
Finally, two groups can be extracted from the heatmaps on the right concerning the mixed community-aware 
centrality measures. The first behaves as the global community-aware centrality measures. Comm centrality 
( βComm ), Participation Coefficient ( βPC ) Community-based Mediator centrality ( βCBM ) fall into this group. The 
second behaves as the local community-aware centrality measures. Community Hub-Bridge centrality ( βCHB ), 
Community-based centrality ( βCBC ), and K-shell with Community centrality ( βks ) fall into this group.

The reason why community-aware centrality measures can be divided into two groups is to be looked for 
in their definitions. Comm centrality ( βComm ) assumes that a node may act as a hub and as a bridge simultane-
ously. Additionally, bridges are given more weight under the assumption that they are generally rare. In a strong 
community structure, there are rare connections between nodes from different communities. Accordingly, if a 
node has external connections (i.e., acting as a bridge), it scores high in Comm centrality. This information is 
combined with the node’s ability to be a hub in its community. As a result, Comm centrality exhibits low correla-
tion with classical centrality measures that don’t differentiate between inter-community and intra-community 
links. Participation Coefficient ( βPC ) assumes that the more a node has links linked externally as compared 
to its total links, the more important it is. This is why, in a network with strong community structure, the rare 
external links of nodes are highly accounted for. As a result, they show low correlation with classical centrality 
measures. Finally, Community-based Mediator centrality ( βCBM ) is based on the simultaneous entropy of the 
intra-community and inter-community links of a node. The subsequent entropy is then weighted by the total 
ratio of connections a node has in a network. Consequently, if a node acquires more inter-community links 
than intra-community links, it will be considered more important. On the other hand, if a node has an equal 
proportion of intra-community and inter-community links, βCBM of the node will turn into its normalized 
degree centrality. The second group, which shows a high correlation with some classical centrality measures, is 
unusual. Community Hub-Bridge centrality ( βCHB ) weights the node’s intra-community links by the size of its 
community and inter-community links by the number of neighboring communities (i.e., the total number of 
communities a node has access to). If the number of communities a node can reach is similar across nodes, or if 
community sizes are comparable, βCHB reduces to degree centrality. In strong community structured networks, 
the number of communities a node can reach is not uniform across nodes since many communities are barely 
connected. Nonetheless, communities may be of comparable sizes. This may be the reason why βCHB behavior 
fluctuates. For example, it has a high correlation (0.71) with Katz centrality ( αk ). At the same time, it has a low 
correlation value (− 0.065) with Leverage centrality ( αlev ). Community-based centrality ( βCBC ) also weights the 
node’s inter-community links with the community sizes. However, this time, the community size of the node’s 
neighbors is taken into consideration, not the node’s community size. The community size of the node is also 
considered to weight the intra-community links. Hence, this centrality is also sensitive to the community sizes. 
If the communities are of comparable sizes, βCBC behaves as Degree centrality. Finally, K-shell with Commu-
nity centrality ( βks ) behaves similarly to Community Hub-Bridge centrality ( βCHB ) and to Community-based 
centrality ( βCBC ) although its definition differs. First, the original network is divided into a local network and a 
global network. Then, the K-shell hierarchical decomposition is performed. A node is then assigned to values, 
weighted by a parameter α to give preference to hubs in the local component as compared to bridges in the global 
component. It is set to 0.5 in this study (i.e., equal preference for hubs and bridges). It seems that a community 
hierarchical decomposition approach to the network doesn’t always provide unique information from the whole 
network. It is interesting to note that only for the second group, Betweenness, PageRank, and Leverage centrality, 
are the only classical centrality measures showing a low correlation.

For a medium community structure strength ( µ = 0.25), the values of the correlation between the local 
community-aware centrality measures and the classical centrality measures still fluctuate in a wide range. The 
global community-aware centrality measures show a slightly higher correlation than in the case of a strong 
community structure ( µ = 0.05). For the mixed community-aware centrality measures, one can still form two 
groups behaving like the local and the global community-aware centrality measures. However, Community-
based Mediator centrality ( βCBM ) shows now medium to high correlation with classical centrality measures. It 
is therefore very sensitive to a small change in the community structure strength.

For a weak community structure ( µ = 0.70), the local community-aware centrality measures are less correlated 
to classical centrality measures. On the contrary, the global community-aware centrality measures exhibit higher 
correlation values. Finally, the mixed community-aware centrality measures show medium to high correlation. 
Comm centrality ( βComm ) still has a low correlation with classical centrality measures.

Figure 2 shows the histograms of the correlation values for the three groups of community-aware centrality 
measures (local, global, mixed) considering the two extreme cases of the networks community structure strength 
(weak and strong). We concentrate on the modal-class quantifying the most frequent correlation range to com-
pare these histograms according to the community structure strength. Let’s first look at the local community-
aware centrality measures. The modal-class interval is [0.70; 0.80] in the strong community structure case ( µ = 
0.05). It shifts to [0.35; 0.45] in the weak community structure case ( µ = 0.70). This behavior clearly illustrates 
that correlation decreases as the community structure get weaker for local community-aware centrality measures. 
This phenomenon is reversed for global community-aware centrality measures. Indeed, for a strong community 
structure ( µ = 0.05), the modal-class interval is [0.2; 0.3] while it is [0.7; 0.8] for a weak community structure 
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( µ = 0.70). For mixed community-aware centrality measures with strong community structure ( µ = 0.05), the 
modal-class interval is [0.01; 0.10]. However, the dispersion of the correlation values is high. With a weak com-
munity structure ( µ = 0.70), the modal-class interval becomes [0.55; 0.65] and correlation values become more 
concentrated at the modal-class interval. In other words, community-aware centrality measures exhibit more 
similar behavior when the community structure gets weaker.

Figure 3 illustrates the correlation between classical and community-aware centrality measures based on a 
bipartite network representation. The classical centrality measures are the blue nodes, and the red nodes represent 
the community-aware centrality measures. Two nodes are connected if their correlation exceeds a threshold 
value of 0.70. For networks with a strong community structure ( µ = 0.05), almost all local community-aware 
centrality measures correlate well with the classical centrality measures. In networks with a weak community 
structure ( µ = 0.70), the network is sparser, signaling less frequent high correlation values. One can observe an 
opposite behavior for the global community-aware centrality measures. Indeed, there is a single link between 
Bridging centrality ( βBC ) and Betweenness centrality ( αb ) in the strong community structure ( µ = 0.05) case, 
while the network is dense in the weak community structure situation ( µ = 0.70). High correlation values are 
less frequent between mixed community-aware and classical centrality measures. For networks with a strong 
community structure ( µ = 0.05), K-shell with Community centrality ( βks ) and Community-based centrality 
( βCBC ) show high correlation with only four classical centrality measures. Namely, Degree centrality ( αd ), Katz 
centrality ( αk ), Diffusion centrality ( αdiff  ) and Laplacian centrality ( αlap ). Community Hub-Bridge centrality 
( βCHB ) shows a high correlation with the same classical centrality measures except for Degree centrality ( αd ). For 
networks with a weak community structure ( µ = 0.70), correlation with classical centrality is high for only two 
community-aware centrality measures. Community Hub-Bridge centrality ( βCHB ) shows a high correlation with 
four classical centrality measures. Namely, Betweenness centrality ( αb ), Degree centrality ( αd ), Katz centrality 
( αp ), and Laplacian centrality ( αlap ). Besides, Community-based Mediator centrality ( βCBM ) shows a high cor-
relation only with degree centrality ( αd ). Therefore, mixed community-aware centrality measures generally do 
not highly correlate with classical centrality measures in a weak community structure.

Let’s summarize the main results of this experiment. First of all, the correlation values between the local com-
munity-aware centrality measures and the classical centrality measures range from medium to high in a network 
with a strong community structure. In conjunction, the global community-aware centrality measures exhibit a 
low correlation with classical centrality measures. Conversely, when a network has a weak community structure, 
the behavior of the global and local community-aware centrality measures is inverted. Mixed community-aware 
centrality measures can be divided into two groups when a network exhibits a strong community structure. One 

Figure 2.   Histograms of the correlation between classical and local, global, and mixed community-aware 
centrality measures. The top histograms are for a strong community structure ( µ = 0.05). The bottom 
histograms are for a weak community structure ( µ = 0.70).
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behaves as the local community-aware centrality measures and the other one as the global ones. In the case of a 
weak community structure, however, they generally demonstrate a medium correlation.

Influence of the degree distribution.  The goal of this experiment is to study the influence of the degree 
distribution. Indeed, the LFR algorithm allows tuning the power-law degree distribution exponent ( γ ) of the 
generated networks. Three values of the exponent ( γ ) are used. The typical value ( γ = 2.7) from the previous 
experiment because it covers a large spectrum of real-world situations39. A low value ( γ = 2.0) resulting in net-
works close to hub-and-spoke networks. Indeed, in this case, nodes’ tendency to link to highly connected nodes 
is enhanced, accelerating the rich-gets-richer process40. A high value ( γ = 3) where the rich-gets-richer phenom-
enon is less pronounced, the network characteristics are closer to a random network40,41. Like in the previous 
experiment, the Kendall’s Tau correlation between the classical and the community-aware centrality measures is 
computed using networks with community structure strength ranging from strong ( µ = 0.05) to weak ( µ = 0.70). 
Figure 4 shows the heatmaps related to the three values of the degree distribution exponent using networks with 
a strong community structure ( µ = 0.05). At first sight, the results are very similar.

The Pearson correlation between the hub-and-spoke type network ( γ = 2) and the reference network ( γ = 
2.7) heatmaps are computed considering the local, global and mixed community-aware centrality measures 
separately. Results confirm that the relation between classical and community-aware centrality measures is quite 
comparable. Indeed, correlation ranges from 0.986 to 0.994. For a random-like structure network ( γ = 3), the 
behavior is still relatively similar compared to the reference case ( γ = 2.7). The Pearson correlation between the 
two networks for local community-aware centrality measures amounts to 0.976. For global community-aware 
centrality measures, it is 0.984. Finally, for mixed community-aware centrality measures, it amounts to 0.987.

The heatmaps using networks with a weak community structure ( µ = 0.70) are provided in Supplementary 
Fig. S2. Results are in the same vein as previously. Indeed, varying the degree exponent ( γ = [2, 2.7, 3]) does 
not affect the heatmaps. For networks with a hub-and-spoke like structure ( γ = 2.7), the Pearson correlation 
between the various community-aware heatmaps and their counterparts in the reference case is also relatively 
high. It is equal to 0.971 for the local community-aware centrality measures, 0.992 for the global community-
aware centrality measures and 0.893 for the mixed community-aware centrality measures. The overall behavior 
is also similar for networks with a random-like structure ( γ = 3). Indeed, for local community-aware centrality 

Figure 3.   Network visualization of the correlation between classical ( αi ) and community-aware ( βj ) centrality 
measures. Two nodes are connected if their Kendall’s Tau correlation value is greater than 0.70. The blue nodes 
represent classical centrality measures. The red nodes represent community-aware centrality measures. The top 
networks are based on an LFR network generated with a strong community structure ( µ = 0.05). The bottom 
networks are based on an LFR network generated with a weak community structure ( µ = 0.70).
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measures, the Pearson correlation value is 0.984, and for the global community-aware centrality measures, it 
amounts to 0.990. Nevertheless, some differences are worth noticing in the mixed community-aware centrality 
measures set. Indeed, the Pearson correlation value is much lower (0.843). Community Hub-Bridge centrality 
( βCHB) , Community-based centrality ( βCBC ), Participation Coefficient ( βPC) , and K-shell with Community cen-
trality ( βks ) show a lower correlation with the classical centrality measures as compared to the reference network.

To summarize, varying the degree distribution exponent doesn’t significantly affect the relationship between 
classical and community-aware centrality measures on artificial networks. However, there is a slight decrease in 
correlation for mixed community-aware centrality measures when the network tends to a random-like structure 
( γ = 3). It is valid for strong and weak community structured networks.

Influence of the community size distribution.  In this experiment, we investigate the effect of commu-
nity size distribution variations. The community size distribution of the networks generated by LFR is a power-
law. Its exponent ( θ ) is tunable. Like in the previous experiments, three values are considered. With a small value 
( θ = 2), networks have many small communities coexisting with very few big communities. The reference case ( θ 
= 2.7) also has many small communities coexisting with very few big communities. However, the proportion of 
small communities is less. Finally, networks have communities with comparable sizes for a high exponent value 
( θ = 3)40.

Figure 5 shows heatmaps of networks having a strong community structure ( µ = 0.05) for the three values of 
the community size distribution exponent. At first glance, they all seem alike. For networks with a high propor-
tion of small communities coexisting with few large communities ( θ = 2), the Pearson correlation between the 
local heatmap and its counterpart in the reference ( θ = 2.7) is the lowest (0.790). Indeed, for a group of local 
community-aware centrality measures, correlation with the classical centrality measures decreases. For global 
community-aware centrality measures, the Pearson correlation value is the highest (0.976), reflecting the similar-
ity with the reference. Finally, with a value of 0.819, the Pearson correlation is for the mixed community-aware 
centrality measures. For networks with comparable community sizes ( θ = 3), the correlation between classical 

Figure 4.   Heatmaps of Kendall’s Tau correlation of the various combinations between classical ( αi ) and 
community-aware ( βj ) centrality measures in synthetic networks. γ is the exponent of the degree distribution. 
Three values are used [2, 2.7, 3]. θ is the exponent of the community size distribution, and µ is the mixing 
parameter. The classical centrality measures are: αd = Degree, αb = Betweenness, αc = Closeness, αk = Katz, αp = 
PageRank, αs = Subgraph, αm = Maximum Neighborhood Component, αlev = Leverage, αdif  = Diffusion, αlap = 
Laplacian. The local community-aware centrality measures are: ( βL
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Community Hub-Bridge centrality, βCBC = Community-based centrality, βPC = Participation Coefficient, βks = 
K-shell with Community centrality, βCBM = Community-based Mediator centrality.
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and community-aware centrality measures is very similar to the reference case ( θ = 2.7). Indeed, the Pearson 
correlation is high in the three categories of community-aware centrality measures. It amounts to 0.987 for the 
local community-aware centrality measures, to 0.993 for the global community-aware centrality measures, and 
0.990 for the mixed community-aware centrality measures.

Let’s now examine the case of networks generated with a weak community structure strength ( µ = 0.70) with 
varying the community size distribution exponent. Heatmaps are available in Supplementary Fig. S3. For net-
works with a high proportion of small communities coexisting with few large communities ( θ = 2), they generally 
show similar behavior that the reference case ( θ = 2.7). Indeed, the Pearson correlation between the network at 
hand ( θ = 2.7) and the reference case ( θ = 2) is high, with a value of 0.956 for local community-aware centrality 
measures and 0.992 for global community-aware centrality. Nevertheless, one can observe differences with mixed 
community-aware centrality measures. The Pearson correlation value is equal to 0.733 in this case. For example, 
Comm centrality ( βComm ) shows a higher correlation than the reference case for all classical centrality measures. 
It could happen because Comm centrality ( βComm ) relies on bridges and hubs, while small communities may lack 
both and have comparable degrees. As a result, it shows a higher correlation with classical centrality measures. 
For networks with communities of comparable sizes ( θ = 3), the heatmaps are very similar to the reference case 
( θ = 2.7). In every case, the Pearson correlation between the heatmaps is relatively high. It amounts to 0.993 for 
the local community-aware centrality measures, to 0.996 for the global community-aware centrality measures, 
and 0.949 for the mixed community-aware centrality measures.

To summarize, varying the community size distribution exponent does not significantly affect the relation-
ship between classical and community-aware centrality measures. Yet, in networks with a high proportion of 
small communities ( θ = 2), whatever the community structure strength, mixed community-aware centrality 
measures tend to have a lower correlation with classical centrality measures than in the reference case ( θ = 2.7).

Figure 5.   Heatmaps of Kendall’s Tau correlation of the various combinations between classical ( αi ) and 
community-aware ( βj ) centrality measures in synthetic networks. γ is the exponent of the degree distribution. θ 
is the exponent of the community size distribution. Three values are used [2, 2.7, 3]. µ is the mixing parameter. 
The classical centrality measures are: αd = Degree, αb = Betweenness, αc = Closeness, αk = Katz, αp = PageRank, 
αs = Subgraph, αm = Maximum Neighborhood Component, αlev = Leverage, αdif  = Diffusion, αlap = Laplacian. 
The local community-aware centrality measures are: ( βL
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centrality measures based on modular centrality, βNNC = Number of Neighboring Communities centrality, βBC 
= Bridging centrality. The mixed community-aware centrality measures are: βComm = Comm centrality, βCHB = 
Community Hub-Bridge centrality, βCBC = Community-based centrality, βPC = Participation Coefficient, βks = 
K-shell with Community centrality, βCBM = Community-based Mediator centrality.
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Comparative evaluation using real‑world networks
Extensive experiments are performed on a set of 50 real-world networks originating from various fields (social, 
biological, infrastructural, collaboration, etc.)42–48. First of all, as there is no ground truth, the community struc-
ture is uncovered. The correlation between classical and community-aware centrality measures is computed using 
Kendall’s Tau, and the influence of the community structure strength is investigated. The community detection is 
performed using Infomap49 as a reference and Louvain50. The goal is to investigate the sensitivity of the results to 
the community structure variation associated with the community detection algorithm. Finally, the correlation 
values are further processed to relate them with the macroscopic and mesoscopic properties of the networks 
using linear regression. Supplementary Note 4 provides a brief description of the real-world networks.

Influence of the community structure strength.  In this experiment, the correlation between classical 
and community-aware centrality measures is compared according to the community structure strength. As the 
community structure of the real-world networks is unknown, Infomap is used to uncover it. It allows estimat-
ing their mixing parameter value ( µ ) and classifying them into three groups. The first group contains networks 
with a strong community structure. They have a mixing parameter value in the range µ = [0.05; 0.19]. A mixing 
parameter value µ = [0.20; 0.29] characterizes networks with a medium community structure strength. Finally, 
for networks with a weak community structure strength, the mixing parameter value falls in the range of µ = 
[0.30, 1]. We illustrate our findings with a typical example of each class in Fig. 6. The Supplementary Material 
contains the results for the other networks. Of course, we report about networks that deviate from the typical 
behavior of their group.

Ego Facebook is a typical network with a strong community structure ( µ = 0.077). The heatmap of local 
community-aware centrality measures shows high variability. For example, the correlation between Degree 
centrality based on intra-community links ( βL

d  ) and Katz centrality ( αk ) is high (0.93), while it is low (0.29) with 
Closeness centrality ( αc ). Results are more homogeneous for global community-aware centrality measures. The 

Figure 6.   Heatmaps of Kendall’s Tau correlation of the various combinations between classical ( αi ) and 
community-aware ( βj ) centrality measures in 3 real-world networks. Networks are sorted in ascending order 
according to their mixing parameter ( µ ). The mixing parameter is deduced after the community structure is 
uncovered using Infomap community detection algorithm. The classical centrality measures are: αd = Degree, 
αb = Betweenness, αc = Closeness, αk = Katz, αp = PageRank, αs = Subgraph, αm = Maximum Neighborhood 
Component, αlev = Leverage, αdif  = Diffusion, αlap = Laplacian. The local community-aware centrality measures 
are: ( βL
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based on modular centrality. The global community-aware centrality measures are: ( βG
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βNNC = Number of Neighboring Communities centrality, βBC = Bridging centrality. The mixed community-
aware centrality measures are: βComm = Comm centrality, βCHB = Community Hub-Bridge centrality, βCBC = 
Community-based centrality, βPC = Participation Coefficient, βks = K-shell with Community centrality, βCBM = 
Community-based Mediator centrality.
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correlation with classical centrality measures is generally low. One can observe these two types of behavior for 
the mixed community-aware centrality measures. Indeed, Comm centrality ( βComm ), Community Hub-Bridge 
centrality ( βCHB ), Participation Coefficient ( βPC ), and Community-based Mediator centrality ( βCBM ) behaves 
as the global community-aware centrality measures. Community-based centrality ( βCBC ), and K-shell with 
Community centrality ( βks ) behave like the local community-aware centrality measures.

GrQc is a network with a medium community structure strength ( µ = 0.20). High variations of the correlation 
values are still visible for local community-aware centrality measures. For global community-aware centrality 
measures, globally, the correlation values are slightly higher. For the mixed community-aware centrality meas-
ures, two groups appear, similar to the ones before. However, they are now less pronounced.

New Zealand Collaboration network has a weak community structure strength ( µ = 0.564). In this case, most 
of the local community-aware centrality measures show a low correlation with classical centrality measures. 
It is notable that most of the global community-aware centrality measures are highly correlated with classical 
centrality measures, except for Betweenness and Leverage based on inter-community links ( βG

b  , βG
lev ). Finally, 

one can still distinguish two groups for the mixed community-aware centrality measures. Nonetheless, the group 
that had low correlation with classical centrality measures in strong and weak community structured networks 
( βComm , βCHB , βPC , βCBM ) now only concerns Comm centrality ( βComm ) and Community Hub-Bridge centrality 
( βCHB ). In other words, most of the mixed community-aware centrality measures now show a high correlation 
with classical centrality measures.

Generally, networks in the same group have similar behavior. Nonetheless, there are few exceptions to the 
general trends reported for the typical networks. For example, the Mouse Visual Cortex (see Supplementary 
Fig. S10) network with a low mixing parameter value can be considered a network with a strong community 
structure ( µ = 0.154). However, the local community-aware centrality measures show low correlation and not 
the global ones. The global and mixed community-aware centrality measures generally show a medium correla-
tion. Caltech is another example (Supplementary Fig. S14) that departs from its class. Although it has a weak 
community structure ( µ = 0.410), it shows a high correlation among almost all combinations between classical 
and community-aware centrality measures.

In comparison with artificial networks, generally, real-world networks comply with the behavior of synthetic 
networks. Indeed, in both cases, it appears that the community structure strength ( µ ) is a major driver affect-
ing the relationship between classical and community-aware centrality measures. For example, Ego Facebook, 
which is a strong community structured network ( µ = 0.077), has a similar heatmap to the synthetic network 
generated with a strong community structure ( µ = 0.05) illustrated in Fig. 1. On the other extreme, New Zealand 
Collaboration (with its weak community structure µ = 0.564) has its global and mixed-community aware cen-
trality measures that behave similarly to the synthetic network generated with a weak community structure ( µ = 
0.70). However, for local community-aware centrality measures, sometimes a lower correlation can be observed. 
The same observation is valid for other networks with a weak community structure (Kegg Metabolic, Internet 
Autonomous Systems, Interactome Vidal, and Human Protein).

This experiment shows that the relation between classical and community-aware centrality measures in 
real-world networks is greatly affected by the community structure strength. That is, for networks with strong 
community structure, local community-aware centrality measures exhibit a non-homogeneous behavior result-
ing in medium to high correlation values. Global community-aware centrality measures have a low correlation 
with classical centrality measures. Mixed community-aware centrality measures, split into two groups. The first 
group behaves as the global community-aware centrality measures. The second group shows a high correlation 
with classical centrality measures. When the community structure strength weakens, the overall behavior gets 
inverted. In networks with a weak community structure, the global community-aware centrality measures show 
a high correlation with classical centrality measures. In contrast, the local community-aware centrality measures 
show a low correlation. Two groups still appear for the mixed community-aware centrality measures. However, 
the group exhibiting high correlation is the biggest.

Influence of the community detection algorithm.  This experiment aims to investigate the influence 
of the variation of the uncovered communities on the relationship between classical and community-aware cen-
trality measures. To this aim, the community structure is uncovered using the Louvain algorithm50. Compari-
sons are performed with the compression-based algorithm Infomap49 outputs used in the previous experiments. 
Louvain is a popular modularity-based community detection algorithm. Based on its output, the Kendall’s Tau 
correlation between community-aware centrality measures and classical centrality measures is computed. In 
addition, the community structure strength ( µ ) is also computed. The heatmaps and their respective community 
structure strength ( µ ) for the 50 real-world networks are reported in the Supplementary Material.

Globally, results show no fundamental difference with the overall behavior observed with Infomap. For 
example, let’s consider the Ego Facebook network. It has a strong community structure based on Infomap ( µ 
= 0.077) and Louvain ( µ = 0.038). Both heatmaps show that the global community-aware centrality measures 
show a low correlation with classical centrality measures in this network. For local community-aware centrality 
measures, the correlation values fluctuate from low to high. Finally, mixed community-aware centrality measures 
are divided into two groups. The first group shows a low correlation with classical centrality measures, and the 
second exhibits a high correlation. The New Zealand Collaboration network is another typical example. It has a 
weak community structure based on Infomap ( µ = 0.564) and Louvain ( µ = 0.412). Both heatmaps show how the 
global community-aware centrality measures are highly correlated with classical centrality measures while the 
local community-aware centrality measures show opposite behavior. Also, mixed community-aware centrality 
measures are divided into two groups. Note that correlation values may be higher or lower depending on the 
intensity of the community structure strength. For example, the correlation value between Degree centrality ( αd ) 
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and Diffusion centrality based on intra-community links ( βL
dif  ) in New Zealand Collaboration using Infomap is 

0.21. This value is lower than the one obtained with Louvain (0.15). It is not unexpected since Infomap extracts 
a weaker community structure.

Although the community structure strength’s influence is comparable, one can notice three main differences 
when comparing the community detection algorithms. First, the values and, therefore, the range of the commu-
nity structure strength differ. It ranges from µ = 0.077 to µ = 0.564 using Infomap while with Louvain it ranges 
from µ = 0.034 to µ = 0.712.

Second, as Louvain is fundamentally different from Infomap, it may uncover community structures that 
are nonidentical. Therefore, the estimated community structure strength can differ significantly. For example, 
the community structure revealed by Infomap in the 911AllWords network is a strong community structure 
( µ = 0.153) but a weak community structure ( µ = 0.712) according to Louvain (refer back to Supplementary 
Figs. S10, S24).

Third, a group of networks shows a low correlation on almost all possible combinations between classical 
and community-aware centrality measures using Infomap. It is not the case using Louvain, where a clear distinc-
tion can be made between local, global, and mixed community-aware centrality measures. These networks are 
London Transport, EuroRoad, and Internet Topology Cogentco. Hence, the community detection algorithm 
may sometimes mask the effect of community structure strength. Indeed, Infomap is able to identify more com-
munities than Louvain51. Accordingly, the intra-community and inter-community links using Infomap in some 
cases may be more heterogeneous for a given node than Louvain. Consequently, low correlation can be seen 
among classical and community-aware centrality measures.

To summarize, using different community detection algorithms can lead to a great variation of the uncovered 
community structure. This is particularly true with networks exhibiting a weak community structure. However, 
it does not significantly influence the behavior between classical and community-aware centrality measures as 
a function of the community structure strength.

Influence of the macroscopic and mesoscopic topological properties of the network.  This 
experiment investigates the relationship of the network topological properties with respect to the correla-
tion between classical and community-aware centrality measures. Like in38, all pairs of correlation measures 
are quantified by their mean value. A high mean value indicates that, on average, community-aware centrality 
measures are highly correlated with classical centrality measures in a network. This value is then related to the 
network topological properties using linear regression. In fact, two mean values are calculated: the mean value 
for the local community-aware centrality measures and the mean value for the global community-aware cen-
trality measures. Indeed, previous experiments have shown that they exhibit an opposite behavior. Correlation 
is high between classical and local community-aware centrality measures in networks with a strong commu-
nity structure and low when networks have a weak community structure. One observes the contrary for global 
community-aware centrality measures. It is the reason why they are investigated separately. Although mixed 
community-aware centrality measurements can be classified into one of these two groups, they are discarded 
because their group can change across networks. Note that the mean values calculated in this experiment are 
based on the communities identified by Infomap.

The relationship between the means and the network topological properties is investigated using simple linear 
regression. Ordinary and weighted least squares estimators are used. In ordinary least squares, all the observa-
tions are weighted equally. In weighted least squares, an observation with high variance is weighted less than an 
observation with low variance during the fitting process. In the latter, weights are estimated using the approach 
of Wooldridge52. More details are provided in Supplementary Note 3.

In these models, the mean values are the dependent variables, and the topological properties of the networks 
are the independent variables. The relationship between the dependent and independent variables is considered 
statistically significant when the p-value is below a threshold value. There are seven macroscopic and nine meso-
scopic topological features under test. The macroscopic features are Density, Transitivity, Assortativity, Average 
distance, Diameter, Efficiency, and Degree distribution exponent ( γpred ). Mixing parameter, Modularity, Internal 
distance, Internal density, Max-ODF, Average-ODF, Flake-ODF, Embeddedness, and Hub dominance are the 
mesoscopic properties. One cannot control the topological properties of real-world networks. They need to be 
computed for each network under study. The power-law degree distribution exponent ( γpred ) is calculated using 
the maximum likelihood estimation process. The Kolmogorov–Smirnov (KS) test is used to test the goodness of 
fit between the estimated power-law distribution and the empirical distribution. In case the test is positive the 
value is used in the linear regression analysis. The topological properties considered are representative structural 
characteristics of real-world networks and their communities31,40,53. Note that among the fifty networks, Football 
is the only one that does not pass the test. Consequently, it is discarded in simple linear regression when study-
ing the degree distribution exponent ( γpred ). The definitions of the macroscopic and mesoscopic properties are 
briefly discussed in Supplementary Note 2, Supplementary Tables S1 and S2 contain their values for each network.

Simple linear regression allows investigating the relation between each topological property and the mean 
correlation values extracted for the local and global community-aware centrality measures. Results plotted in 
Fig. 7 illustrate these relationships. Table S3 in supplementary reports significance, standard error, confidence 
interval, and coefficient of determination estimates using ordinary least squares.

Let us first consider the local community-aware centrality measures (Fig. 7A). The most significant mac-
roscopic features are density, transitivity, and efficiency. Indeed, their p-value is low ( p ≤ 0.01 ). With a higher 
p-value ( p ≤ 0.05 ), average distance can also be considered to have a statistically significant linear relationship 
with the mean. It is not the case for assortativity, diameter, and the degree distribution exponent. Their high 
p-values allow concluding that there is no linear relationship with the mean. The mixing parameter and internal 
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Figure 7.   Relationship of the mean of the correlation between classical, local (A), and global (B) community-
aware centrality measures with respect to the topological properties of real-world networks. The line is fitted by 
linear regression using ordinary least squares. “P” indicates p ≤ 0.05 . “P” and * indicate p ≤ 0.01.
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distance are the only mesoscopic characteristics exhibiting a significant relationship ( p ≤ 0.05 ). The mean corre-
lation value between classical and local community-aware centrality measures increases with density, transitivity, 
and efficiency. Indeed, the denser the network, the more transitive, and the higher its efficiency (smaller shortest 
path distances between nodes). Increasing these parameters translates to a higher proportion of inter-community 
links. As a result, local community-aware centrality measures are drawing closer to classical centrality measures. 
On the contrary, the mean correlation value decreases with the average distance. Indeed, as the average distance 
increases, nodes become less reachable, and local community-aware centrality measures behave more differ-
ently than classical centrality measures. There is a negative linear relationship between the mixing parameter 
and the mean correlation of classical and local community-aware centrality measures. It confirms the results of 
the experiments performed using artificial networks. The higher the mixing parameter, the lower the correlation 
between classical and community-aware centrality measures on average. One can also notice a negative linear 
relationship with internal distance. The higher the distance inside communities, the lower the correlation between 
local community-aware centrality measures and classical centrality measures.

Let’s now turn to global community-aware centrality measures. The relationship of the mean correlation 
between classical and global community-aware centrality measures and macroscopic topological properties illus-
trated in (Fig. 7B) is weaker. Transitivity is the only property with a small p-value ( p ≤ 0.01 ). Although weaker, 
the linear relationship between assortativity and the mean correlation is statistically significant ( p ≤ 0.05 ). How-
ever, compared with the local community-aware centrality case, more mesoscopic characteristics are involved in 
a significant relationship with the mean correlation value. The mixing parameter, internal density, and Max-ODF 
exhibit a significant relationship ( p ≤ 0.01 ), followed by Flake-ODF and Average-ODF ( p ≤ 0.05 ). As transitiv-
ity increases, the mean correlation value between classical and global community-aware centrality measures 
decreases. It may be because the more transitive a network, the higher the proportion of intra-community 
links to inter-community links. Hence, the correlation between global community-aware and classical central-
ity measures decreases as the former relies inter-community links and the latter does not distinguish these two 
types of connections. Assortativity exhibits similar behavior. An increase in assortativity indicates that nodes 
tend to be more attached to peers. A hub in a community may be likely linked to a hub in another community, 
while small degree nodes are also likely to connect to low degree nodes in other communities. As a result, global 
community-aware centrality measures are more capable than classical centrality measures to distinguish nodes in 
this situation. An increase in the mixing parameter increases the correlation between classical and community-
aware centrality measures. The effect of the mixing parameter confirms the results of the previous experiment. 
On a strong community structure (low mixing parameter), the mean of the correlation between classical and 
global community-aware centrality measures is low. As the community structure becomes weaker (higher mix-
ing parameter), the correlation’s mean starts to increase. There is a negative linear relationship between internal 
density and the mean correlation of classical and global community-aware centrality measures. The denser the 
communities, the lower the correlation between classical and global community-aware centrality measures. 
Indeed, in this case, communities act as sub-networks of their own. Hence, inter-community links provide the 
unique distinctiveness of nodes inside dense communities as classical centrality measures account for indis-
tinguishable links. There is a positive relationship between Max-ODF and the mean correlation. Indeed, it is 
related to the nodes acting as bridges in their communities. The more a node has inter-community links, the 
more connected to other communities, the less distinctive the inter-community links are from the other links 
in a network. Average-ODF and Flake-ODF behave similarly to Max-ODF.

The estimates using weighted least squares generally confirm the previous results of ordinary least squares 
concerning the relationship between classical and local community-aware centrality measures with some addi-
tional significant features (see Supplementary Table S4 for details). The relationship between density, transitivity, 
efficiency, average distance, mixing parameter, internal distance, and the mean correlation is still statistically sig-
nificant. In addition, the diameter, modularity, hub dominance become also significant ( p ≤ 0.05 ). The diameter 
has a negative linear relationship with the mean correlation. The higher the network’s diameter, the further the 
distance between the nodes, and the further classical and local community-aware centrality measures disagree. 
Modularity has a negative linear relationship as well. In a highly modular network, community-aware central-
ity measures may diverge from classical ones. The linear relationship between Hub dominance and the mean 
correlation is positive. An increase in the hub size means an increase in its intra-community links with respect 
to all of its links in its community. As a result, the hubs become less heterogeneous, and the correlation of local 
community-aware centrality measures with classical centrality measures gets higher.

Using weighted least squares instead of ordinary least squares in the estimation process of global community-
aware centrality measures does not change the results fundamentally. The linear relationship of average distance 
( p ≤ 0.05 ) and modularity ( p ≤ 0.01 ) with the mean correlation becomes statistically significant, and it is no 
more the case for Average-ODF. The association is negative for the two features. An increase in modularity widens 
the distinction between classical and local as well as global community-aware centrality measures. It results in 
a lower correlation in both cases. Similar behavior is observed for the average distance.

To sum up, using the overlapping results between ordinary and weighted least squares, density, transitivity, 
efficiency, average distance, mixing parameter, and internal distance play a significant role in shaping up the cor-
relation between classical and local community-aware centrality measures. While the most significant topological 
properties influencing the relationship between classical and global community-aware centrality measures are 
transitivity, assortativity, mixing parameter, internal density, Max-ODF, and Flake-ODF.
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Conclusion
This work investigates the interplay between classical, community-aware centrality measures, and network topol-
ogy. It relies on an extensive empirical analysis of artificial networks with controlled topological properties and 
real-world networks originating from various domains. Synthetic network analysis shows that the community 
structure strength significantly impacts the correlation between classical and community-aware centrality meas-
ures. One can distinguish two groups of community-aware centrality measures that behave inversely. The more 
well-separated the communities, the more the global community-aware centrality measures decorrelate from 
classical centrality measures. Inversely, the more local community-aware centrality measures correlate with classi-
cal centrality. Furthermore, the degree distribution exponent and the community size distribution exponent have 
almost no influence on this relationship. Results with real-world networks are consistent with synthetic networks 
regarding the impact of the community structure strength on the relation between community-aware and clas-
sical centrality measures. Using a different community detection algorithm can lead to a different community 
structure but it doesn’t change the relationship between the community structure strength and the relationship 
between classical and community-aware centrality measures. Linear regression analysis shows that in any case, 
the relationship between classical and community-aware centrality measures is highly sensitive to transitivity. 
Density, average distance, efficiency, and internal distance are also important parameters influencing the relation 
between classical and local community-aware centrality measures. Assortativity, internal density, Max-ODF, and 
Flake-ODF turn out to be the most influential properties affecting the relationship between classical and global 
community-aware centrality measures. This work allows us to understand better how network topology, clas-
sical centrality measures, and community-aware centrality measures interact. It shows that community-aware 
centrality measures are more distinct in situations where the community structure is strong. In future work, we 
plan to assess community-aware centrality measures’ effectiveness in various information diffusion scenarios.
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